3.1005 \(\int \frac{\sqrt{-1+\sqrt{x}} \sqrt{1+\sqrt{x}}}{\sqrt{x}} \, dx\)

Optimal. Leaf size=37 \[ \sqrt{\sqrt{x}-1} \sqrt{\sqrt{x}+1} \sqrt{x}-\cosh ^{-1}\left (\sqrt{x}\right ) \]

[Out]

Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]*Sqrt[x] - ArcCosh[Sqrt[x]]

________________________________________________________________________________________

Rubi [A]  time = 0.0208203, antiderivative size = 37, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.107, Rules used = {280, 330, 52} \[ \sqrt{\sqrt{x}-1} \sqrt{\sqrt{x}+1} \sqrt{x}-\cosh ^{-1}\left (\sqrt{x}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]])/Sqrt[x],x]

[Out]

Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]*Sqrt[x] - ArcCosh[Sqrt[x]]

Rule 280

Int[((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*
x)^(m + 1)*(a1 + b1*x^n)^p*(a2 + b2*x^n)^p)/(c*(m + 2*n*p + 1)), x] + Dist[(2*a1*a2*n*p)/(m + 2*n*p + 1), Int[
(c*x)^m*(a1 + b1*x^n)^(p - 1)*(a2 + b2*x^n)^(p - 1), x], x] /; FreeQ[{a1, b1, a2, b2, c, m}, x] && EqQ[a2*b1 +
 a1*b2, 0] && IGtQ[2*n, 0] && GtQ[p, 0] && NeQ[m + 2*n*p + 1, 0] && IntBinomialQ[a1*a2, b1*b2, c, 2*n, m, p, x
]

Rule 330

Int[((c_.)*(x_))^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k =
Denominator[m]}, Dist[k/c, Subst[Int[x^(k*(m + 1) - 1)*(a1 + (b1*x^(k*n))/c^n)^p*(a2 + (b2*x^(k*n))/c^n)^p, x]
, x, (c*x)^(1/k)], x]] /; FreeQ[{a1, b1, a2, b2, c, p}, x] && EqQ[a2*b1 + a1*b2, 0] && IGtQ[2*n, 0] && Fractio
nQ[m] && IntBinomialQ[a1*a2, b1*b2, c, 2*n, m, p, x]

Rule 52

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ArcCosh[(b*x)/a]/b, x] /; FreeQ[{a,
 b, c, d}, x] && EqQ[a + c, 0] && EqQ[b - d, 0] && GtQ[a, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{-1+\sqrt{x}} \sqrt{1+\sqrt{x}}}{\sqrt{x}} \, dx &=\sqrt{-1+\sqrt{x}} \sqrt{1+\sqrt{x}} \sqrt{x}-\frac{1}{2} \int \frac{1}{\sqrt{-1+\sqrt{x}} \sqrt{1+\sqrt{x}} \sqrt{x}} \, dx\\ &=\sqrt{-1+\sqrt{x}} \sqrt{1+\sqrt{x}} \sqrt{x}-\operatorname{Subst}\left (\int \frac{1}{\sqrt{-1+x} \sqrt{1+x}} \, dx,x,\sqrt{x}\right )\\ &=\sqrt{-1+\sqrt{x}} \sqrt{1+\sqrt{x}} \sqrt{x}-\cosh ^{-1}\left (\sqrt{x}\right )\\ \end{align*}

Mathematica [A]  time = 0.0210303, size = 72, normalized size = 1.95 \[ \frac{\sqrt{\sqrt{x}+1} \sqrt{x} \left (\sqrt{x}-1\right )+2 \sqrt{1-\sqrt{x}} \sin ^{-1}\left (\frac{\sqrt{1-\sqrt{x}}}{\sqrt{2}}\right )}{\sqrt{\sqrt{x}-1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]])/Sqrt[x],x]

[Out]

((-1 + Sqrt[x])*Sqrt[1 + Sqrt[x]]*Sqrt[x] + 2*Sqrt[1 - Sqrt[x]]*ArcSin[Sqrt[1 - Sqrt[x]]/Sqrt[2]])/Sqrt[-1 + S
qrt[x]]

________________________________________________________________________________________

Maple [B]  time = 0.007, size = 72, normalized size = 2. \begin{align*} \sqrt{-1+\sqrt{x}} \left ( 1+\sqrt{x} \right ) ^{{\frac{3}{2}}}-\sqrt{-1+\sqrt{x}}\sqrt{1+\sqrt{x}}-{\sqrt{ \left ( 1+\sqrt{x} \right ) \left ( -1+\sqrt{x} \right ) }\ln \left ( \sqrt{x}+\sqrt{-1+x} \right ){\frac{1}{\sqrt{-1+\sqrt{x}}}}{\frac{1}{\sqrt{1+\sqrt{x}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-1+x^(1/2))^(1/2)*(1+x^(1/2))^(1/2)/x^(1/2),x)

[Out]

(-1+x^(1/2))^(1/2)*(1+x^(1/2))^(3/2)-(-1+x^(1/2))^(1/2)*(1+x^(1/2))^(1/2)-((1+x^(1/2))*(-1+x^(1/2)))^(1/2)/(1+
x^(1/2))^(1/2)/(-1+x^(1/2))^(1/2)*ln(x^(1/2)+(-1+x)^(1/2))

________________________________________________________________________________________

Maxima [A]  time = 0.937178, size = 35, normalized size = 0.95 \begin{align*} \sqrt{x - 1} \sqrt{x} - \log \left (2 \, \sqrt{x - 1} + 2 \, \sqrt{x}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x^(1/2))^(1/2)*(1+x^(1/2))^(1/2)/x^(1/2),x, algorithm="maxima")

[Out]

sqrt(x - 1)*sqrt(x) - log(2*sqrt(x - 1) + 2*sqrt(x))

________________________________________________________________________________________

Fricas [A]  time = 0.971627, size = 151, normalized size = 4.08 \begin{align*} \sqrt{x} \sqrt{\sqrt{x} + 1} \sqrt{\sqrt{x} - 1} + \frac{1}{2} \, \log \left (2 \, \sqrt{x} \sqrt{\sqrt{x} + 1} \sqrt{\sqrt{x} - 1} - 2 \, x + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x^(1/2))^(1/2)*(1+x^(1/2))^(1/2)/x^(1/2),x, algorithm="fricas")

[Out]

sqrt(x)*sqrt(sqrt(x) + 1)*sqrt(sqrt(x) - 1) + 1/2*log(2*sqrt(x)*sqrt(sqrt(x) + 1)*sqrt(sqrt(x) - 1) - 2*x + 1)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\sqrt{x} - 1} \sqrt{\sqrt{x} + 1}}{\sqrt{x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x**(1/2))**(1/2)*(1+x**(1/2))**(1/2)/x**(1/2),x)

[Out]

Integral(sqrt(sqrt(x) - 1)*sqrt(sqrt(x) + 1)/sqrt(x), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x^(1/2))^(1/2)*(1+x^(1/2))^(1/2)/x^(1/2),x, algorithm="giac")

[Out]

Exception raised: RuntimeError